Automatic cell type annotation using supervised classification: A systematic literature review

Main Article Content

Nazifa Tasnim Hia
Sumon Ahmed

Abstract

Single-cell sequencing gives us the opportunity to analyze cells on an individual level rather than at a population level. There are different types of sequencing based on the stage and portion of the cell from where the data are collected. Among those Single Cell RNA seq is most widely used and most application of cell type annotation has been on Single-cell RNA seq data. Tools have been developed for automatic cell type annotation as manual annotation of cell type is time-consuming and partially subjective. There are mainly three strategies to associate cell type with gene expression profiles of single cell by using  marker genes databases, correlating expression data, transferring levels by supervised classification. In this SLR, we present a comprehensive evaluation of the available tools and the underlying approaches to perform automated cell type annotations on scRNA-seq data.

Article Details

How to Cite
Hia, N. T., & Sumon Ahmed. (2022). Automatic cell type annotation using supervised classification: A systematic literature review . Systematic Literature Review and Meta-Analysis Journal, 3(3), 99–108. https://doi.org/10.54480/slrm.v3i3.45
Section
Articles

References

Alquicira-Hernandez, J., Sathe, A., Ji, H. P., Nguyen, Q., & Powell, J. E. (2019). ScPred: Accurate supervised method for cell-type classification from single-cell RNA-seq data. Genome Biology, 20(1), 1–17. https://doi.org/10.1186/s13059-019-1862-5 DOI: https://doi.org/10.1186/s13059-019-1862-5

Goyal, M., Serrano, G., Argemi, J., Shomorony, I., Hernaez, M., & Ochoa, I. (2022). JIND: joint integration and discrimination for automated single-cell annotation. Bioinformatics. https://doi.org/10.1093/bioinformatics/btac140 DOI: https://doi.org/10.1093/bioinformatics/btac140

Ji, X., Tsao, D., Bai, K., Tsao, M., & Zhang, X. (2022). scAnnotate: an automated cell type annotation tool for single-cell RNA-sequencing data. BioRxiv, 2022.02.19.481159. https://www.biorxiv.org/content/10.1101/2022.02.19.481159.abstract DOI: https://doi.org/10.1101/2022.02.19.481159

Johnson, T. S., Wang, T., Huang, Z., Yu, C. Y., Wu, Y., Han, Y., Zhang, Y., Huang, K., & Zhang, J. (2019). LAmbDA: Label ambiguous domain adaptation dataset integration reduces batch effects and improves subtype detection. Bioinformatics, 35(22), 4696–4706. https://doi.org/10.1093/bioinformatics/btz295 DOI: https://doi.org/10.1093/bioinformatics/btz295

Kitchenham, B. A., Mendes, E., & Travassos, G. H. (2007). Cross versus within-company cost estimation studies: A systematic review. IEEE Transactions on Software Engineering, 33(5), 316–329. https://doi.org/10.1109/TSE.2007.1001 DOI: https://doi.org/10.1109/TSE.2007.1001

Lin, Y., Cao, Y., Kim, H. J., Salim, A., Speed, T. P., Lin, D. M., Yang, P., & Yang, J. Y. H. (2020). scClassify: sample size estimation and multiscale classification of cells using single and multiple reference. Molecular Systems Biology, 16(6). https://doi.org/10.15252/MSB.20199389 DOI: https://doi.org/10.15252/msb.20199389

Ma, F., & Pellegrini, M. (2020). ACTINN: Automated identification of cell types in single cell RNA sequencing. Bioinformatics, 36(2), 533–538. https://doi.org/10.1093/bioinformatics/btz592 DOI: https://doi.org/10.1093/bioinformatics/btz592

Mädler, S. C., Julien-Laferriere, A., Wyss, L., Phan, M., Sonrel, A., Kang, A. S. W., Ulrich, E., Schmucki, R., Zhang, J. D., Ebeling, M., Badi, L., Kam-Thong, T., Schwalie, P. C., & Hatje, K. (2021). Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research. NAR Genomics and Bioinformatics, 3(4). https://doi.org/10.1093/nargab/lqab102 DOI: https://doi.org/10.1093/nargab/lqab102

Pasquini, G., Rojo Arias, J. E., Schäfer, P., & Busskamp, V. (2021a). Automated methods for cell type annotation on scRNA-seq data. In Computational and Structural Biotechnology Journal (Vol. 19, pp. 961–969). https://doi.org/10.1016/j.csbj.2021.01.015

Pasquini, G., Rojo Arias, J. E., Schäfer, P., & Busskamp, V. (2021b). Automated methods for cell type annotation on scRNA-seq data. Computational and Structural Biotechnology Journal, 19, 961–969. https://doi.org/10.1016/j.csbj.2021.01.015 DOI: https://doi.org/10.1016/j.csbj.2021.01.015

Pliner, H. A., Shendure, J., & Trapnell, C. (2019). Supervised classification enables rapid annotation of cell atlases. Nature Methods, 16(10), 983–986. https://doi.org/10.1038/s41592-019-0535-3 DOI: https://doi.org/10.1038/s41592-019-0535-3

Qi, R., Wu, J., Guo, F., Xu, L., & Zou, Q. (2021). A spectral clustering with self-weighted multiple kernel learning method for single-cell RNA-seq data. Briefings in Bioinformatics, 22(4). https://doi.org/10.1093/bib/bbaa216 DOI: https://doi.org/10.1093/bib/bbaa216

Ray, S., & Schönhuth, A. (2020). MarkerCapsule: Explainable Single Cell Typing using Capsule Networks. In bioRxiv. https://www.biorxiv.org/content/10.1101/2020.09.22.307512.abstract DOI: https://doi.org/10.1101/2020.09.22.307512

Shasha, C., Tian, Y., Mair, F., Miller, H., BioRxiv, R. G.-, & 2021, U. (n.d.). Superscan: Supervised Single-Cell Annotation. Biorxiv.Org. Retrieved May 12, 2022, from https://www.biorxiv.org/content/10.1101/2021.05.20.445014.abstract DOI: https://doi.org/10.1101/2021.05.20.445014

Tan, Y., & Cahan, P. (2019). SingleCellNet: A Computational Tool to Classify Single Cell RNA-Seq Data Across Platforms and Across Species. Cell Systems, 9(2), 207-213.e2. https://doi.org/10.1016/j.cels.2019.06.004 DOI: https://doi.org/10.1016/j.cels.2019.06.004

Theunissen, L. (2021). A COMPARISON OF FLAT AND HIERARCHICAL CLASSIFICATION FOR AUTOMATIC ANNOTATION OF SINGLE-CELL TRANSCRIPTOMICS DATA. https://libstore.ugent.be/fulltxt/RUG01/003/008/162/RUG01-003008162_2021_0001_AC.pdf

Upadhyay, P., Genetics, S. R.-F. in, & 2022, U. (n.d.). A Regularized Multi-Task Learning Approach for Cell Type Detection in Single-Cell RNA Sequencing Data. Europepmc.Org. Retrieved May 12, 2022, from https://europepmc.org/articles/pmc9043858/bin/datasheet1.pdf DOI: https://doi.org/10.3389/fgene.2022.788832

Wagner, F., & Yanai, I. (2018). Moana: A robust and scalable cell type classification framework for single-cell RNA-Seq data. BioRxiv. https://doi.org/10.1101/456129 DOI: https://doi.org/10.1101/456129

Wang, S., Pisco, A. O., McGeever, A., Brbic, M., Zitnik, M., Darmanis, S., Leskovec, J., Karkanias, J., & Altman, R. (2019). Unifying single-cell annotations based on the Cell Ontology. BioRxiv, 810234. https://doi.org/10.1101/810234 DOI: https://doi.org/10.1101/810234

Xie, P., Gao, M., Wang, C., Zhang, J., Noel, P., Yang, C., Von Hoff, D., Han, H., Zhang, M. Q., & Lin, W. (2019). SuperCT: A supervised-learning framework for enhanced characterization of single-cell transcriptomic profiles. Nucleic Acids Research, 47(8), 1–12. https://doi.org/10.1093/nar/gkz116 DOI: https://doi.org/10.1093/nar/gkz116

Xu, C., Lopez, R., Mehlman, E., Regier, J., Jordan, M. I., & Yosef, N. (2021). Probabilistic harmonization and annotation of single‐cell transcriptomics data with deep generative models. Molecular Systems Biology, 17(1). https://doi.org/10.15252/msb.20209620 DOI: https://doi.org/10.15252/msb.20209620