A comprehensive systematic literature review on traffic flow prediction (TFP)

Main Article Content

Md. Moshiur Rahman
Md. Mahbubul Alam Joarder
Naushin Nower

Abstract

Nowadays, traffic congestion is becoming a severe problem for almost every urban area. It badly hampers the economic growth of a country because it has negative effects on productivity and business. Increasing populations and urbanization are the main reasons for traffic congestion in most cities. However, traffic prediction, forecasting, and modeling can help provide appropriate routes and times for traveling and can significantly impact traffic jam reduction. Currently, there is a lot of research being done on traffic flow analysis in all developed countries, and they are planning their future accordingly. The objective of this review paper is to provide a comprehensive and systematic review of the traffic prediction literature, containing 98 papers published from 2010 to 2020. The papers are extracted from four well-known publishers and databases: Scopus, ScienceDirect, IEEE Xplore, and ACM. This article concentrates on the research approaches, directions, and gaps in traffic flow prediction. It also talks about current trends in predicting traffic flow and what might be taken into account in the future.

Article Details

How to Cite
Rahman, M. M., Md. Mahbubul Alam Joarder, & Naushin Nower. (2022). A comprehensive systematic literature review on traffic flow prediction (TFP). Systematic Literature Review and Meta-Analysis Journal, 3(3), 86–98. https://doi.org/10.54480/slrm.v3i3.44
Section
Articles

References

Abadi, A., Rajabioun, T., & Ioannou, P. A. (2015). Networks With Limited Traffic Data. Ieee Transactions on Intelligent Transportation Systems, 16(2), 653–662.

Borrego, M., Foster, M. J., & Froyd, J. E. (2014). Systematic literature reviews in engineering education and other developing interdisciplinary fields. Journal of Engineering Education, 103(1), 45–76. doi: 10.1002/jee.20038 DOI: https://doi.org/10.1002/jee.20038

Cao, C. (2017). Research on Traffic Flow Prediction in the Big Data Environment Based on the Improved RBF Neural Network. Boletin Tecnico/Technical Bulletin, 55(8), 616–624.

Chan, R. K. C., Lim, J. M. Y., & Parthiban, R. (2021). A neural network approach for traffic prediction and routing with missing data imputation for intelligent transportation system. Expert Systems with Applications, 171(July 2020), 114573. doi: 10.1016/j.eswa.2021.114573 DOI: https://doi.org/10.1016/j.eswa.2021.114573

Chen, C., Hu, J., Meng, Q., & Zhang, Y. (2011). Short-time traffic flow prediction with ARIMA-GARCH model. IEEE Intelligent Vehicles Symposium, Proceedings, 100084(Iv), 607–612. doi: 10.1109/IVS.2011.5940418 DOI: https://doi.org/10.1109/IVS.2011.5940418

Do, L. N. N., Vu, H. L., Vo, B. Q., Liu, Z., & Phung, D. (2019). An effective spatial-temporal attention based neural network for traffic flow prediction. Transportation Research Part C: Emerging Technologies, 108(August), 12–28. doi: 10.1016/j.trc.2019.09.008 DOI: https://doi.org/10.1016/j.trc.2019.09.008

Droj, G., Droj, L., & Badea, A.-C. (2021). GIS-Based Survey over the Public Transport Strategy: An Instrument for Economic and Sustainable Urban Traffic Planning. ISPRS International Journal of Geo-Information, 11(1), 16. doi: 10.3390/ijgi11010016 DOI: https://doi.org/10.3390/ijgi11010016

Hossain, I., & Nower, N. (2022). Traffic Data Collection and Visualization Tool for Knowledge Discovery Using Google Maps. International Journal of Software Innovation, 10(1), 1–12. doi: 10.4018/ijsi.293270 DOI: https://doi.org/10.4018/IJSI.293270

Huang, W., Song, G., Hong, H., & Xie, K. (2014). Deep architecture for traffic flow prediction: Deep belief networks with multitask learning. IEEE Transactions on Intelligent Transportation Systems, 15(5), 2191–2201. doi: 10.1109/TITS.2014.2311123 DOI: https://doi.org/10.1109/TITS.2014.2311123

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., & Linkman, S. (2010). Systematic literature reviews in software engineering-A tertiary study. Information and Software Technology, 52(8), 792–805. doi: 10.1016/j.infsof.2010.03.006 DOI: https://doi.org/10.1016/j.infsof.2010.03.006

Koesdwiady, A., Soua, R., & Karray, F. (2016). Improving Traffic Flow Prediction With Weather Information in Connected Cars: A Deep Learning Approach. 65(12), 9508–9517. DOI: https://doi.org/10.1109/TVT.2016.2585575

Kumar, K., Parida, M., & Katiyar, V. K. (2013). Short Term Traffic Flow Prediction for a Non Urban Highway Using Artificial Neural Network. Procedia - Social and Behavioral Sciences, 104, 755–764. doi: 10.1016/j.sbspro.2013.11.170 DOI: https://doi.org/10.1016/j.sbspro.2013.11.170

Kumar, S. V. (2017). Traffic Flow Prediction using Kalman Filtering Technique. Procedia Engineering, 187, 582–587. doi: 10.1016/j.proeng.2017.04.417 DOI: https://doi.org/10.1016/j.proeng.2017.04.417

L, X. X. R. K. D. Q. G. L., Ol, O. L., Wvlqjkxd, P., & Fq, H. G. X. (n.d.). 8vlqj /670 dqg *58 1hxudo 1hwzrun 0hwkrgv iru 7udiilf )orz 3uhglfwlrq. 11–15.

Liu, Yi, Yu, J. J. Q., Kang, J., Niyato, D., & Zhang, S. (2020). Privacy-Preserving Traffic Flow Prediction: A Federated Learning Approach. IEEE Internet of Things Journal, 7(8), 7751–7763. doi: 10.1109/JIOT.2020.2991401 DOI: https://doi.org/10.1109/JIOT.2020.2991401

Liu, Yipeng, Zheng, H., Feng, X., & Chen, Z. (2017). Short-term traffic flow prediction with Conv-LSTM. 2017 9th International Conference on Wireless Communications and Signal Processing, WCSP 2017 - Proceedings, 2017-Janua, 1–6. doi: 10.1109/WCSP.2017.8171119 DOI: https://doi.org/10.1109/WCSP.2017.8171119

Luo, X., Li, D., Yang, Y., & Zhang, S. (2019). Spatiotemporal traffic flow prediction with KNN and LSTM. Journal of Advanced Transportation, 2019. doi: 10.1155/2019/4145353 DOI: https://doi.org/10.1155/2019/4145353

Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y. (2015). Traffic Flow Prediction with Big Data: A Deep Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 16(2), 865–873. doi: 10.1109/TITS.2014.2345663 DOI: https://doi.org/10.1109/TITS.2014.2345663

Mackenzie, J., Roddick, J. F., & Zito, R. (2019). An evaluation of HTM and LSTM for short-term arterial traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 20(5), 1847–1857. doi: 10.1109/TITS.2018.2843349 DOI: https://doi.org/10.1109/TITS.2018.2843349

Paul, A., Chilamkurti, N., Daniel, A., & Rho, S. (2016). Intelligent Vehicular Networks and Communications: Fundamentals, Architectures and Solutions. In Intelligent Vehicular Networks and Communications: Fundamentals, Architectures and Solutions. Elsevier Inc. DOI: https://doi.org/10.1016/B978-0-12-809266-8.00001-6

Polson, N. G., & Sokolov, V. O. (2017). Deep learning for short-term traffic flow prediction. Transportation Research Part C: Emerging Technologies, 79, 1–17. doi: 10.1016/j.trc.2017.02.024 DOI: https://doi.org/10.1016/j.trc.2017.02.024

Tang, J., Zhang, X., Yin, W., Zou, Y., & Wang, Y. (2021). Missing data imputation for traffic flow based on combination of fuzzy neural network and rough set theory. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 25(5), 439–454. doi: 10.1080/15472450.2020.1713772 DOI: https://doi.org/10.1080/15472450.2020.1713772

Thakur, S. (2016). A Review of Traffic Congestion Problem and Various Automated Traffic Measurement Sensors and Techniques. Indian Journal of Science and Technology, 9(1), 1–16. doi: 10.17485/ijst/2016/v9i47/106902 DOI: https://doi.org/10.17485/ijst/2016/v9i47/106902

White, A., & Schmidt, K. (2005). Systematic literature reviews. Complementary Therapies in Medicine, 13(1), 54–60. doi: 10.1016/j.ctim.2004.12.003 DOI: https://doi.org/10.1016/j.ctim.2004.12.003

Wu, Y., Tan, H., Qin, L., Ran, B., & Jiang, Z. (2018). A hybrid deep learning based traffic flow prediction method and its understanding. Transportation Research Part C: Emerging Technologies, 90(5), 166–180. doi: 10.1016/j.trc.2018.03.001 DOI: https://doi.org/10.1016/j.trc.2018.03.001

Xu, F. F., Lin, B. Y., Lu, Q., Huang, Y., & Zhu, K. Q. (2016). Cross-region traffic prediction for China on OpenStreetMap. Proceedings of the 9th ACM SIGSPATIAL International Workshop on Computational Transportation Science, IWCTS 2016, 37–42. doi: 10.1145/3003965.3003972 DOI: https://doi.org/10.1145/3003965.3003972

Yang, B., Sun, S., Li, J., Lin, X., & Tian, Y. (2019). Traffic flow prediction using LSTM with feature enhancement. Neurocomputing, 332, 320–327. doi: 10.1016/j.neucom.2018.12.016 DOI: https://doi.org/10.1016/j.neucom.2018.12.016

Zhang, W., Zhang, P., Yu, Y., Li, X., Biancardo, S. A., & Zhang, J. (2021). Missing Data Repairs for Traffic Flow With Self-Attention Generative Adversarial Imputation Net. IEEE Transactions on Intelligent Transportation Systems, 1–12. doi: 10.1109/TITS.2021.3074564 DOI: https://doi.org/10.1109/TITS.2021.3074564