Weed detection using machine learning: A systematic literature review

Main Article Content

Bashir Salisu Abubakar

Abstract

Recently, many researchers and practitioners used Machine Learning (ML) algorithms in digital agriculture to help farmers in decision making. This study aims to identify, assess and synthesize research papers that applied ML algorithms in weed detection using the Systematic Literature Review (SLR) Protocol. Based on our defined search string, we retrieved a total of 439 research papers from three electronic databases, of which 20 papers were selected based on the selection criteria and thus, were synthesized and analyzed in detail. The most applied ML algorithm is Neural Networks in these models. Thirteen evaluation parameters were identified, of which accuracy is the most used parameter. 75% of the selected papers used cross-validation as the evaluation approaches, while the rest used holdout. The challenges most encountered were insufficient data and manual labeling of the pixel during image segmentation. Based on the ML algorithms identified, we concluded that supervised learning techniques are the most used techniques in weed detection.

Article Details

How to Cite
Abubakar, B. S. . (2021). Weed detection using machine learning: A systematic literature review. Systematic Literature Review and Meta-Analysis Journal, 2(2), 61-73. https://doi.org/10.54480/slrm.v2i2.21
Section
Articles

References

United Nations, “World Population Prospects 2019: Highlights,” Dep. Econ. Soc. Aff. Popul. Div., no. 141, pp. 49–78, 2019, doi: 10.3406/tiers.1983.4290.

P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, and I. Moscholios, “A compilation of UAV applications for precision agriculture,” Comput. Networks, vol. 172, p. 107148, May 2020, doi: 10.1016/j.comnet.2020.107148.

J. Hatfield, E. Takle, R. Grotjahn, P. Holden, and R. César Izaurralde, “Agriculture,” 2014, doi: 10.7930/J02Z13FR.

K. G. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, “Machine learning in agriculture: A review,” Sensors (Switzerland), vol. 18, no. 8, p. 2674, Aug. 2018, doi: 10.3390/s18082674.

S. Rana and M. C. Rana, “Principles and Practices of Weed Management Third Edition,” no. September, 2019.

M. Esposito, M. Crimaldi, V. Cirillo, F. Sarghini, and A. Maggio, “Drone and sensor technology for sustainable weed management: a review,” Chem. Biol. Technol. Agric., vol. 8, no. 1, pp. 1–11, 2021, doi: 10.1186/s40538-021-00217-8.

A. dos Santos Ferreira, D. Matte Freitas, G. Gonçalves da Silva, H. Pistori, and M. Theophilo Folhes, “Weed detection in soybean crops using ConvNets,” Comput. Electron. Agric., vol. 143, no. February, pp. 314–324, 2017, doi: 10.1016/j.compag.2017.10.027.

N. . Lavanya, S. Niharika, C. H. Deepika, M. Harini, and K. K. Chetana, “A Review on Weed Detection Using Image Processing,” Indian J. Sci. Technol., vol. 12, no. 48, pp. 1–3, 2019, doi: 10.17485/ijst/2019/v12i48/149410.

A. Wang, W. Zhang, and X. Wei, “A review on weed detection using ground-based machine vision and image processing techniques,” Comput. Electron. Agric., vol. 158, no. January, pp. 226–240, 2019, doi: 10.1016/j.compag.2019.02.005.

A. A. Ramahi and F. A. Fathallah, “Ergonomic evaluation of manual weeding practice and development of an ergonomic solution,” Proc. Hum. Factors Ergon. Soc., pp. 1421–1425, 2006, doi: 10.1177/154193120605001335.

T. M. Ahmad, L. Tang, and B. L. Steward, “Automated mechanical weeding,” in Automation: The Future of Weed Control in Cropping Systems, Springer Netherlands, 2014, pp. 125–137.

M. Hussain, S. Farooq, C. Merfield, and K. Jabran, “Mechanical weed control,” in Non-Chemical Weed Control, Elsevier, 2018, pp. 133–155.

K. Shailaja, B. Seetharamulu, and M. A. Jabbar, “Machine Learning in Healthcare: A Review,” in Proceedings of the 2nd International Conference on Electronics, Communication and Aerospace Technology, ICECA 2018, Sep. 2018, pp. 910–914, doi: 10.1109/ICECA.2018.8474918.

A. Callahan and N. H. Shah, “Machine Learning in Healthcare,” in Key Advances in Clinical Informatics: Transforming Health Care through Health Information Technology, Elsevier Inc., 2017, pp. 279–291.

D. S. Char, M. D. Abràmoff, and C. Feudtner, “Identifying Ethical Considerations for Machine Learning Healthcare Applications,” Am. J. Bioeth., vol. 20, no. 11, pp. 7–17, Nov. 2020, doi: 10.1080/15265161.2020.1819469.

R. Bhardwaj, A. R. Nambiar, and D. Dutta, “A Study of Machine Learning in Healthcare,” in Proceedings - International Computer Software and Applications Conference, Sep. 2017, vol. 2, pp. 236–241, doi: 10.1109/COMPSAC.2017.164.

S. B. Kotsiantis, “Use of machine learning techniques for educational proposes: A decision support system for forecasting students’ grades,” Artif. Intell. Rev., vol. 37, no. 4, pp. 331–344, Apr. 2012, doi: 10.1007/s10462-011-9234-x.

A. B. U. Nájera and J. de la Calleja Mora, “Brief review of educational applications using data mining and machine learning,” Rev. Electron. Investig. Educ., vol. 19, no. 4, pp. 84–96, 2017, doi: 10.24320/redie.2017.19.4.1305.

D. Kučak, V. Juričić, and G. Đambić, “Machine learning in education - A survey of current research trends,” Ann. DAAAM Proc. Int. DAAAM Symp., vol. 29, no. 1, pp. 0406–0410, 2018, doi: 10.2507/29th.daaam.proceedings.059.

M. F. Dixon, I. Halperin, and P. Bilokon, Machine learning in finance: From theory to practice. Springer International Publishing, 2020.

W. Y. Lin, Y. H. Hu, and C. F. Tsai, “Machine learning in financial crisis prediction: A survey,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 42, no. 4. pp. 421–436, Jul. 2012, doi: 10.1109/TSMCC.2011.2170420.

J. Perols, “Financial statement fraud detection: An analysis of statistical and machine learning algorithms,” Auditing, vol. 30, no. 2, pp. 19–50, May 2011, doi: 10.2308/ajpt-50009.

F. Rundo, F. Trenta, A. L. di Stallo, and S. Battiato, “Machine learning for quantitative finance applications: A survey,” Appl. Sci., vol. 9, no. 24, p. 5574, Dec. 2019, doi: 10.3390/app9245574.

A. Chlingaryan, S. Sukkarieh, and B. Whelan, “Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review,” Computers and Electronics in Agriculture, vol. 151. Elsevier B.V., pp. 61–69, Aug. 01, 2018, doi: 10.1016/j.compag.2018.05.012.

R. J. McQueen, S. R. Garner, C. G. Nevill-Manning, and I. H. Witten, “Applying machine learning to agricultural data,” Comput. Electron. Agric., vol. 12, no. 4, pp. 275–293, Jun. 1995, doi: 10.1016/0168-1699(95)98601-9.

H. Storm, K. Baylis, and T. Heckelei, “Machine learning in agricultural and applied economics,” Eur. Rev. Agric. Econ., vol. 47, no. 3, pp. 849–892, Jun. 2020, doi: 10.1093/erae/jbz033.

B. Kitchenham et al., “Guidelines for performing systematic literature reviews in software engineering,” 2007.

B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic literature reviews in software engineering - A systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, 2009, doi: 10.1016/j.infsof.2008.09.009.

A. S. M. M. Hasan, F. Sohel, D. Diepeveen, H. Laga, and M. G. K. Jones, “A survey of deep learning techniques for weed detection from images,” Comput. Electron. Agric., vol. 184, 2021, doi: 10.1016/j.compag.2021.106067.

A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Comput. Electron. Agric., vol. 147, no. July 2017, pp. 70–90, 2018, doi: 10.1016/j.compag.2018.02.016.

S. Wen-Hao, “Advanced Machine Learning in Point Spectroscopy, RGB- and Hyperspectral-Imaging for Automatic Discriminations of Crops and Weeds: A Review,” Smart Cities, vol. 3, no. 3, pp. 767–792, 2020, doi: 10.3390/smartcities3030039.

T. Rumpf, C. Römer, M. Weis, M. Sökefeld, R. Gerhards, and L. Plümer, “Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine,” Comput. Electron. Agric., vol. 80, pp. 89–96, 2012, doi: 10.1016/j.compag.2011.10.018.

I. H. Yano, J. R. Alves, W. E. Santiago, and B. J. T. Mederos, “Identification of weeds in sugarcane fields through images taken by UAV and Random Forest classifier,” IFAC-PapersOnLine, vol. 49, no. 16, pp. 415–420, 2016, doi: 10.1016/j.ifacol.2016.10.076.

J. L. Tang, D. Wang, Z. G. Zhang, L. J. He, J. Xin, and Y. Xu, “Weed identification based on K-means feature learning combined with convolutional neural network,” Comput. Electron. Agric., vol. 135, pp. 63–70, 2017, doi: 10.1016/j.compag.2017.01.001.

A. Bakhshipour and A. Jafari, “Evaluation of support vector machine and artificial neural networks in weed detection using shape features,” Comput. Electron. Agric., vol. 145, no. December 2017, pp. 153–160, 2018, doi: 10.1016/j.compag.2017.12.032.

M. Dian Bah, A. Hafiane, and R. Canals, “Deep learning with unsupervised data labeling for weed detection in line crops in UAV images,” Remote Sens., vol. 10, no. 11, pp. 1–22, 2018, doi: 10.3390/rs10111690.

K. Sandeep Kumar, “Convolution Neural Network Based Weed Detection in Horticulture Plantation,” vol. 7, no. June, pp. 43–49, 2018.

S. Murawwat, A. Qureshi, S. Ahmad, and Y. Shahid, “Weed Detection Using SVMs,” Eng. Technol. Appl. Sci. Res., vol. 8, no. 1, pp. 2412–2416, 2018, doi: 10.48084/etasr.1647.

T. Sarvini, T. Sneha, G. S. Sukanya Gowthami, S. Sushmitha, and R. Kumaraswamy, “Performance comparison of weed detection algorithms,” Proc. 2019 IEEE Int. Conf. Commun. Signal Process. ICCSP 2019, pp. 843–847, 2019, doi: 10.1109/ICCSP.2019.8698094.

M. G. Forero, S. Herrera-Rivera, J. Ávila-Navarro, C. A. Franco, J. Rasmussen, and J. Nielsen, “Color classification methods for perennial weed detection in cereal crops,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Nov. 2019, vol. 11401 LNCS, pp. 117–123, doi: 10.1007/978-3-030-13469-3_14.

M. H. Asad and A. Bais, “Weed detection in canola fields using maximum likelihood classification and deep convolutional neural network,” Inf. Process. Agric., vol. 7, no. 4, pp. 535–545, 2020, doi: 10.1016/j.inpa.2019.12.002.

K. Osorio, A. Puerto, C. Pedraza, D. Jamaica, and L. Rodríguez, “A Deep Learning Approach for Weed Detection in Lettuce Crops Using Multispectral Images,” AgriEngineering, vol. 2, no. 3, pp. 471–488, 2020, doi: 10.3390/agriengineering2030032.

Y. Beeharry and V. Bassoo, “Performance of ANN and AlexNet for weed detection using UAV-based images,” in 2020 3rd International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering, ELECOM 2020 - Proceedings, Nov. 2020, pp. 163–167, doi: 10.1109/ELECOM49001.2020.9296994.

J. Gao, A. P. French, M. P. Pound, Y. He, T. P. Pridmore, and J. G. Pieters, “Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields,” Plant Methods, vol. 16, no. 1, pp. 1–12, 2020, doi: 10.1186/s13007-020-00570-z.

M. Dyrmann, R. N. Jørgensen, and H. S. Midtiby, “RoboWeedSupport - Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network,” Adv. Anim. Biosci., vol. 8, no. 2, pp. 842–847, 2017, doi: 10.1017/s2040470017000206.

Y. Jialin, A. W. Schumann, Z. Cao, S. M. Sharpe, and N. S. Boyd, “Weed Detection in Perennial Ryegrass With Deep Learning Convolutional Neural Network,” Front. Plant Sci., vol. 10, no. October, pp. 1–9, 2019, doi: 10.3389/fpls.2019.01422.

J. Yu, S. M. Sharpe, A. W. Schumann, and N. S. Boyd, “Deep learning for image-based weed detection in turfgrass,” Eur. J. Agron., vol. 104, no. January, pp. 78–84, 2019, doi: 10.1016/j.eja.2019.01.004.

M. Ofori and O. El-Gayar, “Towards deep learning for weed detection: Deep convolutional neural network architectures for plant seedling classification,” 26th Am. Conf. Inf. Syst. AMCIS 2020, no. August, 2020.

B. Espejo-Garcia, N. Mylonas, L. Athanasakos, S. Fountas, and I. Vasilakoglou, “Towards weeds identification assistance through transfer learning,” Comput. Electron. Agric., vol. 171, no. February, p. 105306, 2020, doi: 10.1016/j.compag.2020.105306.

M. D. Bah, A. Hafiane, R. Canals, and B. Emile, “Deep features and One-class classification with unsupervised data for weed detection in UAV images,” 2019 9th Int. Conf. Image Process. Theory, Tools Appl. IPTA 2019, pp. 1–5, 2019, doi: 10.1109/IPTA.2019.8936091.

D. Šmite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical evidence in global software engineering: A systematic review,” Empir. Softw. Eng., vol. 15, no. 1, pp. 91–118, Feb. 2010, doi: 10.1007/s10664-009-9123-y.

Cavus, N., Lawan, A. A., Ibrahim, Z., Dahiru, A., Tahir, S., Abdulrazak, U. I., and Hussaini, A., “A Systematic Literature Review on the Application of Machine-Learning Models in Behavioral Assessment of Autism Spectrum Disorder,” J. Pers. Med., vol. 11, no. 4, p. 299, Apr. 2021, doi: 10.3390/jpm11040299.